

FINDING A BETTER WAY

RMMS

Road Marking Management System

RMMS is comparable to PMS for road surfaces

Prediction of the road marking performance, using an statistical approach

$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha \times \beta)_{ij} + (\alpha \times \gamma)_{ik} + (\beta \times \gamma)_{jk} + (\alpha \times \beta \times \gamma)_{ijk} + \varepsilon$

The idea is to decide what parameters of interest are α , β , γ and estimate there values.

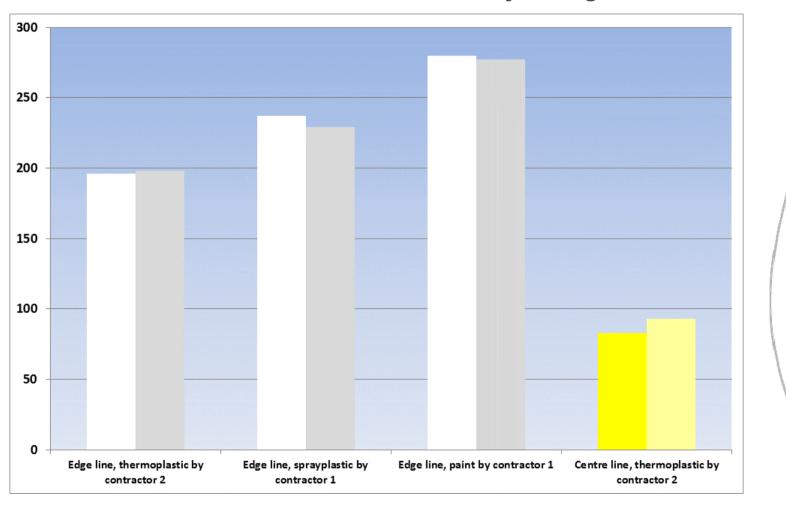
As an example

 α may be the age of the road marking β may be the road marking material γ may be the contractor

$$\begin{split} R_{2} &= \mu - AGE_{i} - MIL_{i} - CIR_{i} - (AGE \times MIL)_{e} - (AGE \times CIR)_{ii} - (MIL \times CIR)_{ii} - (AGE \times MIL \times CIR)_{eii} - \varepsilon \end{split}$$

Results from		
Region Eas	t, Norway	

- AGE New (i=0) 1 year old (i=1)
- MTL **Thermoplastic (j=1)** Sprayplastic (j=2) Paint (j=3)
- CTR Contractor 1 (k=1) Contractor 2 (k=2)


Response	Index	Parameter
variable	Index	estimation
constant (μ)		256
AGE	i = 0	39
	<i>i</i> = 1	0
MTL	j = 1	-60
	<i>j</i> = 2	-43
	<i>j</i> = 3	0
CTR	k = 1	24
	<i>k</i> = 2	0
$AGE \times MTL$	<i>i</i> , <i>j</i> = 0, 1	8
	<i>i,j</i> = 0,2	-7
	others	0
$AGE \times CTR$	<i>i</i> , <i>k</i> = 0,1	28
	others	0
$MTL \times CTR$	<i>j</i> , <i>k</i> = 1,1	-41
	others	0
$AGE \times MTL \times CTR$	<i>i</i> , <i>j</i> , <i>k</i> = 0,1,1	34
	others	0

 $R_L = 256 + 0 - 60 + 24 + 0 + 0 - 41 + 0 = 179$

Estimated retroreflectivity in Region South, 1 year old 300 250 200 150 100 50 0 Edge line, thermoplastic by Edge line, paint by contractor 1 Centre line, thermoplastic by Edge line, sprayplastic by contractor 2 contractor 1 contractor 2

Estimated and measured retroreflectivity in Region South

